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Abstract 

Short-term seismic hazard based on the stability analysis methods of the 1990s is part of the deep mine 
culture of South African mines. Temporal precursory patterns have shown some level of success not only in 
deep gold mines but also in shallower mines in Australia. 

In complex geological and mining environments precursory patterns in temporal trends can be lost due to 
multiple processes mixing and diluting these trends. It is not always possible to separate these mixed 
processes by refining the traditional spatial filters, making analysis of these regions difficult. This paper 
proposes the use of an unsupervised learning algorithm to categorise seismic data with the intention of 
separating different seismogenic processes. This algorithm should not only take spatial and temporal 
parameters into consideration but should include parameters related to seismic sources, e.g. energy index, 
ES /EP ratio, etc. 

In this investigation, an implementation of the DBSCAN clustering algorithm to categorise seismic data was 
used. This density based algorithm requires only two parameters: the maximum search distance, ρ , and the 
minimum number of neighbours required to form a cluster, 𝑛𝑚𝑖𝑛. The advantages of DBSCAN include its 
ability to create any number of clusters to suit the data set as well as its ability to identify noise and outliers. 
DBSCAN can struggle to cluster data sets where there are large differences in densities, since there may not 
be an appropriate choice of 𝜌 and 𝑛𝑚𝑖𝑛 for all clusters. 

We investigate a few cases where multi-dimensional clustering indicates precursory trends. More 
specifically examples of density clustering of spatial-and-temporal and spatial-and-source clustering are 
discussed. 

1 Introduction 

Short-term hazard assessment has been part of the South African deep mining industry for many years 
(Brink & Mountfort 1984, p. 317). This has typically involved experienced mine seismologists analysing the 
seismic trends in multiple regions of a mine on a daily basis. Ideally, the influence of each seismic event 
should be investigated as it is recorded but for practical and economic reasons, this is generally not 
possible. This research has focused on ways to automatically determine the seismic hazard of each 
production area of a mine multiple times a day. Previous studies have focused on the temporal trends of a 
number of seismic parameters currently used for short-term hazard assessment (van Aswegen 2005, 
p. 437; Mendecki 1997; Rebuli & van Aswegen 2013, p. 485). Figure 1 is a classic temporal trend showing 
decreasing energy index (EI) and accelerated cumulative apparent volume (CAV) before a large event (Hills 
et al. 2013, p. 485).  

https://papers.acg.uwa.edu.au/p/1410_50_Rebuli/

https://papers.acg.uwa.edu.au/p/1410_50_Rebuli/
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Figure 1 Time history of the period leading up to a large seismic event. The decrease in EI and 
accelerated CAV are classic instability indicators (Hills et al. 2013, p. 485) 

These trends are not always observed before a large event and it is speculated that this may be due to 
competing processes blurring the temporal trends. Spatial filtering is generally used to try and eliminate the 
effect but this is not always appropriate. There are other techniques which can be used to extract 
information from the data. Clustering is one of these techniques and is a class of unsupervised learning 
algorithms which attempts to group similar seismic events together. There are many different types of 
clustering algorithms, each with their own strengths and weaknesses. This research focused on clustering 
algorithms that use a weighted Euclidean metric to partition the data into hard clusters, i.e. a data element 
can only belong to a single cluster. In particular, the single-link clustering algorithm (SCA) and the density 
clustering algorithm (DCA) were used to analyse seismic data. 

2 Clustering method 

2.1 Single-link clustering algorithm 

In general, the clustering algorithms would cluster data elements which would be a 𝑅𝑁 representation of a 
seismic event. Each component of the data element would represent a parameter of a seismic event. Single 
link clustering (SCA) uses a weighted Euclidean metric to determine the distance, 𝜌, between any two data 
elements in the parameter space. The distance is defined such that data elements which are similar would 
have shorter distances than data elements which are dissimilar. In SCA, each data element starts off in its 
own cluster. The elements are then compared to each other and if 𝜌 is less than the maximum distance 
parameter, 𝜌𝑚𝑎𝑥 then the elements are considered to be similar and the clusters containing them are 
merged. The clusters that remain after all the elements have been compared to each other form the 
partitioning of the data elements. 

This particular algorithm can produce an effect known as chaining. An example of chaining can be seen in 
Figure 2, where the two clusters A and B are in close proximity to each other. It is possible to incorrectly 
merge these two clusters by introducing a few data elements between the two clusters. In the context of a 
mining environment, each cluster should be associated with a single seismogenic region for it to be 
meaningful when analysing the seismic hazard. The chaining effect of SCA would result in large clusters 
which are associated with many seismogenic regions making analysis of the seismic hazard difficult. An 
example of this can be seen in Figure 3 where clusters of seismic events are visible at the panels but the 
many scattered events would link all the clusters together forming a single large cluster covering multiple 
panels. A modification to the SCA would help reduce the likelihood of the chaining effect occurring. This 
new clustering algorithm is known as the DCA. 
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Figure 2 Example of the chaining effect produced by the single-link clustering algorithm; (a) 
original clusters;  
(b) merging of the clusters due to the chaining effect resulting from a couple of stray 
events between the clusters 

 

Figure 3 Example of the chaining effect in the mining environment. Three distinct clusters can 
be observed around the panels (outlined ellipsoids), however, the scattered events 
located between the clusters could cause SCA to merge all the clusters into one large 
cluster (indicated by dotted freehand shape) 

2.2 Density clustering algorithm 

This density clustering algorithm is an implementation of the DBSCAN clustering algorithm (Ester et al. 
1996). It improves upon the SCA by adding a minimum number of neighbours parameter, 𝑛𝑚𝑖𝑛 . Two data 
elements are said to be neighbours if 𝜌 < 𝜌𝑚𝑎𝑥 . The parameters, 𝑛𝑚𝑖𝑛 and 𝜌𝑚𝑎𝑥, are used to classify data 
elements as one of the following: 

 Core element: a data element which has at least 𝑛𝑚𝑖𝑛 neighbours. 

 Boundary element: a data element which has at least one core element as a neighbour but has 
fewer than 𝑛𝑚𝑖𝑛 neighbours. 

 Noise element: a data element which has fewer than 𝑛𝑚𝑖𝑛 neighbours with none of them being 
core elements. 

The algorithm works by finding an unvisited core element and creating a cluster containing the core 
element and its neighbours. The algorithm then recursively goes through all the unvisited core elements in 
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the cluster and adds their neighbours to the cluster. This process repeats itself until all the core points have 
been visited. This algorithm would return a set of clusters and list of all noise elements. 

The combination of 𝑛𝑚𝑖𝑛  and 𝜌𝑚𝑎𝑥  means that two clusters would only merge if they shared core 
elements. This reduces the possibility of chaining as chaining is mostly due to data elements on the fringes 
of the clusters linking together. For this reason, the DCA was chosen over the SCA as the preferred 
clustering algorithm for this research. 

 

Figure 4 Example of density clustering algorithm overcoming the chaining effect. The original 
clusters A and B are shown with the additional elements between them (a); the 
resulting clusters A and B are shown (b) with  
B growing by a single new element. The black circles indicate 𝝆𝒎𝒂𝒙, and 𝒏𝒎𝒊𝒏 was set as 
5 

2.3 Seismic events 

There are several issues which should be taken into consideration when clustering seismic events: 

 How many event parameters should be used to cluster the data. 

 How a seismic event should be mapped to a data element. 

 How the different units and orders of magnitude should be handled in the weighted Euclidean 
metric. 

In general, one would need to create a function which would map an event parameter to a real number. 
Typically, the parameters that one would be interested in, are already quantified (e.g. x coordinate, time, 
energy, moment, etc.) and thus the mapping would be trivial. Each event parameter would then be 
represented by one component in the data element. There is no limit to the number of event parameters 
that can be used in the clustering algorithm but it should be noted that increasing the number of 
parameters would increase the dimension of real space thereby increasing the distance between the data 
elements. Using the minimum number of parameters needed to describe the clustering problem would 
generally produce better results. 

A value range standardisation procedure is used on each of the parameters in order to handle the units and 
the order of magnitude of the parameters. The standardisation procedure (Milligan & Cooper 1988) is as 

follows: 𝑢𝑖 =
𝑢𝑖

′−𝑢𝑖𝑚𝑖𝑛

𝑢𝑖𝑚𝑎𝑥−𝑢𝑖𝑚𝑖𝑛
 where 𝑢𝑖 ∈ [0,1] is the 𝑖𝑡ℎ component of the data element 𝑢, 𝑢𝑖

′ is the value of 

𝑖𝑡ℎ parameter, 𝑢𝑖𝑚𝑖𝑛/𝑚𝑎𝑥 is the minimum/maximum value of the 𝑖𝑡ℎ parameter. 

The resulting data element, 𝑢, which represents the 𝑁 parameters of the seismic event, can be described as 
𝑢 ∈ 𝑅𝑁 and 𝑢𝑖 ∈ [0,1]. 
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3 Results and discussion 

3.1 Spatial-temporal clustering 

Figure 5 show a section of a mine together with production points and all the seismic events recorded 
during a 24 hour period. The purpose of this investigation is to generate a set of clusters and classify them 
according to given production data. For a cluster to be associated with production it would need to be both 
spatially close to a production point and around blasting time. It is interesting to note that while there are 
many production points there are only a few event clusters. One can identify six clusters by eye (marked 
A-F). 

  

(a) (b) 

Figure 5 Plan view of a section of the mine with the production points (a); and all the events 
recorded during a 24 hour period (b) 

The resulting clusters can be seen in Figure 6. The clusters are coloured to indicate whether they are 
associated with production or not. The light clusters are associated with production while the darker 
clusters are not associated with production. It is also noted that the observed clusters B-F are produced by 
the clustering algorithm. The clustering algorithm was also able to obtain the hidden temporal clusters. 
Even though the events in cluster A were spatially clustered, it was found that they were not temporally 
clustered and thus the clustering algorithm did not cluster them. 

 

(a) (b) 

Figure 6 Histogram of the event times showing the clusters related to blasting (a); the clusters 
produced by the DCA as indicated by spheres sized by local magnitude (b) 

This case demonstrates the ability of the clustering algorithm to identify clusters which are associated with 
production as well cluster that are not associated with production. The automatic clustering will augment 
the human analysis by highlighting the production versus non-production related clusters. 
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In another example, mine wide spatial and temporal clustering was performed and an anomalous region 
was found. This smaller region of the mine can be seen in Figure 7. The results of the clustering in this area 
show three prominent clusters indicated by shades of grey. The light grey cluster is observed around 
blasting time and is likely associated with production. The grey cluster indicates anomalous events 
recorded around midnight. A further black cluster was observed during the early morning. This cluster 
includes a m1.3 event which was recorded at 5:38 am. The event is marked in Figure 7 with a vertical line in 
the histogram. The same clustering analysis was performed on the preceding day to test whether the 
anomalous cluster, observed at midnight, may indicate an instability in the rock mass. The results of this 
clustering can be seen in Figure 8. 

  

(a) (b) 

Figure 7 Histogram of the event times showing the three prominent clusters indicated by 
shades of grey (a); the vertical line indicates the time of the large event; event plot 
showing the three prominent clusters (b) 

The strong blast time cluster is the most prominent cluster observed in Figure 8. A cluster of events is 
observed around midnight but it is not as prominent as the one seen in Figure 7. This suggests that 
previously unseen clusters observed outside of blasting time can indicate instabilities in the rock mass. This 
could be implemented as an automatic alarm to prompt human investigation into the anomalous cluster. 
Another advantage is that, historically, regions of monitoring are generally set up manually before-hand, 
while spatial filtering automatically emerges from the clustering. 

  

(a) (b) 

Figure 8 Histogram of the event times showing the prominent blast time cluster indicated in 
light grey (a); a cluster of activity is observed around midnight, indicated in dark grey; 
event plot of the clusters (b) 

3.2 Spatial-ES/EP clustering 

The effect of comparing clusters from different time scales was also investigated. This was done by finding 
a large event and clustering the events recorded during the preceding day as well as the events recorded 
during the preceding week. In the example shown in Figure 9, the clustering was performed on the spatial 
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parameters as well as the ES/EP ratio. For this mine, the predominant failure mechanism for large events is 
shear type events which typically have high ES/EP ratios. The cluster indicated by hourglasses is the result of 
clustering the week preceding the large event while the clusters indicated by spheres are the results of 
clustering the preceding day. An interesting observation is the presence of a high ES/EP ratio cluster 
observed during the preceding day but not during the preceding week. Under normal spatial clustering this 
may have been missed but here the multi-dimensional clustering highlights this new subcluster. This 
suggests that it may be possible to automatically identify instabilities by observing the changes in the 
clustering results on different time scales. 

   

(a) (b) 

Figure 9 Histogram of the ES/EP ratio of the events (a). The cluster produced by the long-term 
(week preceding the large event) clustering is indicated by hourglasses while the 
spheres correspond to the short-term (day preceding the large event) clusters. The 
event plot shows the results of the clustering (b) 

Preliminary work on how to interpret such clusters into a value of seismic hazard was investigated. 
At mines where large events usually have shear type mechanisms, it is probable that using the ES/EP ratio as 
a clustering parameter could indicate seismic hazard. To test this, two months of seismic data from a region 
of a mine was clustered using spatial, temporal and ES/EP ratio parameters. The results of the clustering can 
be seen in Figure 10. Events exceeding m1.0 are indicated by vertical markers. There were eleven large 
events which were grouped into eight distinct large event occurrences. This would mean a random 
probability of an event exceeding m1.0 on any given day of 14%. The clusters are grouped according to the 
mean ES/EP ratio as follows: black clusters indicate high ratios (>8), white indicates low ratios (<5) and grey 
indicates ratios between the high and low values. By looking at high ES/EP clusters with more than ten 
events, there is a 88% chance of a large event occurring within one day of finding these precursory clusters 
(success rate), a 13% chance of missing a large event and a 42% chance that there won't be a large event 
following the precursory cluster. The success rate of using this technique is 6.3 times better than randomly 
guessing each day whether there will be a large event. This suggests that clustering on ES/EP ratio in this 
region may add value to seismic hazard analysis.  
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(a) (b) 

Figure 10 The results of clustering the spatial, temporal and ES/EP ratio parameters (a). The ES/EP 
ratio clusters are indicated by colours where black indicates high E S/EP events, white 
indicates low ES/EP events and grey indicates the events in between the high and low 
values. The vertical markers indicate large events (m>1.0). The high E S/EP clusters (b) 
are shown together with the event count threshold (horizontal line)  

3.3 Spatial-energy index clustering 

Prior to a large event in a specific region of the mine the classic temporal trend of falling EI and accelerating 
CAV was observed (Figure 11). This area was selected to test if spatial-and-source clustering would be 
useful. Here spatial-and-EI clustering for a period leading up to the time of high EI (9 September) showed a 
number of low EI clusters even though the general temporal trend was indicating a slow increase in EI. 
These low EI events were mostly around the eastern panels (Figure 12) but contained few events. Only the 
top three clusters are indicated on the spatial map, so as not to clutter the picture too much.  

From then, leading up to the large event the picture changes quite dramatically with a single low EI cluster 
emerging on the eastern panels. Figure 13 shows the histogram of the clustering along with the spatial map 
which is dominated by a low EI cluster on the east. The clustering is in agreement with the time history 
trend but has the advantage that it can be identified automatically more easily and could offer a better 
indication of the spatial extent of the instability rather than a manually pre-defined region. 

 

Figure 11 The time history of EI and CAV from an area around the stopes for a period leading up 
to a large event. EI is on a slow upward trend up until around the 9th of September but 
a strong drop with accelerated CAV occurs from then until the large event  
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(a) (b) 

Figure 12 Histogram of the clustering results (a). The colouring has been chosen to differentiate 
between the clusters with the white cluster showing the unclustered events. The top 
three clusters are shown as hourglasses (b) 

  

(a) (b) 

Figure 13 Histogram of the clustering results (a). The dominant low EI cluster indicated. The 
clusters are shown (b) with the dominant low EI cluster located at the eastern panels  

4 Conclusion 

Short-term hazard assessment has been around for a number of years in the deep South African gold 
mines. A number of improvements have been added over time. This paper describes investigations into the 
use of clustering methods as another tool which could be used for automatic detection of short-term 
instabilities. 

Three different types of clustering were tested on a mine, namely spatial-and-temporal, spatial-and-ES/EP 
and spatial-and-EI clustering, using the DBSCAN method of clustering.  

The spatial-and-temporal clustering was able to detect an anomalous cluster of seismicity a few hours after 
a production blast which culminated in a large seismic event. Since this cluster was late at night, it is 
unlikely it would have been detected by a human, unless the mine has dedicated staff watching the 
seismicity on a 24 hour, seven days a week basis. Automating this type of clustering would help in 
highlighting the instability ahead of time with the possibility of an early alarm. It has the added advantage 
of being able to identify these anomalous clusters throughout the mine without the user needing to setup 
spatial regions of interest.  

On a mine where the predominant failure mechanism for large events is shear, the study investigated the 
benefits of spatial-ES/EP clustering. Testing this over a period of two months showed that clusters of high 
ES/EP events were observed prior to large events 88% of the time. Although a few large events were missed 
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and a few false alarms were present, the success rate was well above the random likelihood of a large 
event occurring. 

The third clustering test involved looking for the more classical drop in EI precursory trend. Here spatial-EI 
clustering highlighted an area of low EI a few days before a large seismic event. Again the advantage is that 
predefined monitoring regions are not necessary and automatic alarming on these clusters is possible. 

The three clustering types tested have shown that automatic detection of precursory trends prior to large 
events is possible. Using all three clustering types and automatically notifying the relevant mining personal 
could be new tools in the short-term seismic hazard monitoring arsenal. 
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