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Summary

The spatial continuity of the variables studied must be quan-
tified. In order to use the spatial correlation to improve in-
ference at unsampled locations, several tools are defined to
measure such spatial relationship. We will review the con-
cepts of spatial continuity including correlograms, covari-
ances, and variograms.

Pairs of points located at short distance show high cor-
relation, while pairs farther away show a lower correlation.
This intuitive idea is captured by the numerical tools de-
scribed in this chapter.

We introduce the notion of anisotropy, that is, the fact
that continuity depends on the direction, and discuss the
conditions to infer a variogram, the possible interpretations
of an experimental variogram, and the approach to model-
ing the variogram, and why this is needed.
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1 Introduction

The notion of spatial continuity is intuitive. We assume that,
because nature shows structure in most geological phenom-
ena, things we find at one location in space should be similar
at locations nearby. For example, if we find sand in a beach,
we expect to find more sand a few steps away. Similarly, if
we measure a concentration of lead at one location, origi-
nated from a pollution event, we expect to find more lead
in nearby locations, since it is reasonable to expect those
locations have been also affected by the pollution episode.

In mineral deposits, rock type units show structure, hence
continuity in space. The concentration of an element within
a rock type will tend to change slowly, since its deposition
depends on the properties of the rock, such as its perme-
ability. The hydrothermal fluids that permeated the rock and
cooled to deposit the metals we seek, will follow permeable
paths within the rock, generating a connected deposition.

We will measure this continuity by linking pairs of points
that are separated by a distance vector h. From there, we
will define different measures of similarity or measures of
dissimilarity and integrate this behavior for all possible dis-
tances and directions.

2 Comparing pairs of locations

The most intuitive notion of spatial correlation comes from
comparing the variable at two locations separated by a dis-
tance h. Notice that h is a vector with magnitude and direc-
tion that we can call lag separation distance. h can be “one
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meter in the East direction”, for example. We can search
and record all the pairs within a stationary domain that are
separated by the vector h. Notice that the (second-order)
stationarity assumption is needed, as we are implicitly say-
ing that the difference in the grade in the two sample loca-
tions that form a pair is independent of where the pair is in
the domain.

Side note: the measures of spatial continuity that are
presented next (variogram, covariance and correlo-
gram) are two-point statistics and hence require a sec-
ond order stationarity assumption for their inference.

If the variable is very continuous, the two elements of
these pairs will be quite similar, even for large separation
distances. On the other hand, a discontinuous variable will
show significant differences between the two elements in
the pair, even for short distances.

Collecting all the pairs found of samples separated by a
vector h, we can plot them in a scatter plot (this is called
h-scatter plot). The values found at the tail of the vector h
can be labelled z(), while those found at the head of the
vector, z( + h) (see Figure 1). A statistical summary of
the bivariate relationship is the correlation coefficient.

Figure 1: The lag separaton distance vector, showing its head and tail
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The process can be repeated for different lag separation
distances, and for each set of pairs of points, the correlation
coefficient can be calculated. We should expect seeing a de-
creasing correlation, as the separation distance increases.
In fact, at some point, we should expect to find pairs with
no correlation.

The plot of the correlation coefficient versus the lag
separation distance for the pairs, is called experimental
correlogram. For distance h=0, the correlogram takes
a value of 1, as the pairs are made of a sample with
itself (z(), z()). On the contrary, for large distances
the correlogram tends to 0, as the pairs become uncor-
related when very far apart.

Let us rewrite the expression of the correlation coefficient
using the tail and head values as variables:

ρZ(),Z(+h) =
CoZ(),Z(+h)

σZ() · σZ(+h)
(1)

where the covariance is:

CoZ(),Z(+h) =
1

n

n
∑

=1

(z()−mZ())·(z( + h) −mZ(+h)) (2)

Therefore, we can also measure the relationship with the
spatial covariance, insead of the correlation coefficient.

Again, we can calculate and plot the covariance for dif-
ferent lag separation distances. The resulting plot is called
experimental covariance.
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From the equations presented above, we can see that
both the correlogram and the covariance require knowing
the means and standard deviations of the tail and head val-
ues of the pairs found. These values are not known, they
are estimated from the available samples, thus the calcu-
lated values are just an approximation of the true correlo-
gram and covariance (we make an abstraction here, where
we pretend there is an underlying true random function that
has a specific and unknown correlogram and covariance).

In order to avoid computing these moments (mans and
standard deviations) prior to quantifying the spatial correla-
tion, a different tool has been traditionally used in geostatis-
tics: the variogram.

3 The variogram

The variogram (or the semi-variogram1, to be precise) is the
main tool used to quantify spatial correlation in geostatis-
tics.

The variogram is defined as half the average squared-
difference between the value of the variable at loca-
tions separated by a distance h.

Unlike the correlogram or the covariance, the variogram
measures how different the two locations are (on average),
instead of how similar they are.

1Unless clearly stated, we will omit the word “semi-” when referring to the semi-
variogram. Therefore, every time we mention the variogram, we are referring to half
the average of the squared-difference of the values of the random variables at two
locations separated by a specific distance and orientation.
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Before presenting the practicalities of variogram calcula-
tion and modeling, we will go back to the idea of the ran-
dom function, and work from the formal definition of the
variogram to its estimator, and discuss the assumption for
its inference:

� We call the underlying variogram, under the framework
of random variables and the random function, the the-
oretical variogram (this is a mathematical abstraction).

� If we had exhaustive access to all the values of the re-
gionalized variable in a domain, we would be able to
compute the so called regional variogram (unlike the
theoretical variogram, this is a quantity we could ac-
tually acquire, if we had infinite resources by exhaus-
tively sampling the domain). The regional variogram
can be seen as an output of a random drawing of the
random function over the domain, which has the un-
derlying theoretical variogram.

� In most cases, we only have a few measurements of
the regionalized variable over the domain at sample
locations. We can use these values to infer the sam-
ple variogram, also known as experimental variogram,
which approximates the regional variogram.

3.1 The theoretical variogram

Recall that we defined a random function as a collection of
random variables within a domain. We also discussed that,
in order to make inference about the properties of this ran-
dom function, we need the domain to be homogeneous. The
best way to define this homogeneity is by stating that all
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random variables within the domain share some statistical
and spatial properties. In particular, we expect that pairs
of random variables show a similar relationship in all parts
of the domain, that is, there are no trends in the values of
the random variables, in their variability, or on their rela-
tionships. If this is the case, we call the random function
stationary, and this allow us to pull together the data we
have to make statistical inference about the properties of
the random function.

The formal definition of the variogram is:

γ(h) =
1

2
Vr
¦

Z() − Z( + h)
©

(3)

Notice that this assumes that the variance of the differ-
ence between two random variables, does not depend on
their location within the domain, that is, does not depend
on , but only on their separation h.

Therefore, recalling that the variance of a random vari-
able is defined as:

Vr{X} = E
¦

[X − E{X}]2
©

(4)

we see that the expression for the variogram can be ex-
panded to:

γ(h) =
1

2
Vr
¦

Z() − Z( + h)
©

=
1

2
E
¦

�

Z() − Z( + h) − E{Z() − Z( + h)}
�2©
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If we assume the random function is stationary, then the
mean of the random variables is constant everywhere in the
domain, thus:

E{Z()} = E{Z( + h)} =m

Therefore, we can simplify the previous expression:

γ(h) =
1

2
E
¦

�

Z() − Z( + h) −
�

E{Z()} − E{Z( + h)}
��2©

=
1

2
E
¦

�

Z() − Z( + h) −
�

m −m
��2©

=
1

2
E
¦

�

Z() − Z( + h)
�2©

In summary, under second-order stationarity, we can write
the variogram as:

Theoretical variogram

γ(h) =
1

2
E
¦

�

Z() − Z( + h)
�2©

3.2 The regional variogram

The regional variogram is basically the experimental var-
iogram when all the possible samples in the domain are
available. This is unrealistic, but it is interesting to think
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about it for a moment, before getting into the inference is-
sues we will face when computing the experimental vari-
ogram.

Since we are assuming all locations are known within the
domain for the calculation of the regional variogram, the
result will use all the points that fall in the intersection of the
domain and itself shifted by the separation distance vector
h (see Figure 2).

In most cases we will consider unreliable the variogram
computed for distances that are very large, since this leaves
part of the domain unrepresented in the calculation of the
regional variogram. That is, some points at the center of
the domain will not participate in the calculation of the var-
iogram, since they will neither be the head or the tail of a
pair for the variogram calculation. This is represented in
Figure 3. Both, the points in the regions A or C will be tails
or heads of pairs used to compute the regional variogram.
However, points in the region B will never be used.

As a rule of thumb, the variogram is not computed be-
yond half the size of the domain.

3.3 The experimental variogram

In practice, we have a limited number of locations where
samples are available. From this information, we need to
infer the variogram, in the hope that it represents fairly the
regional variogram. The regional variogram can be seen
as an outcome of the underlying process controlled by the
random function, which has a theoretical variogram. At the
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Figure 2: Domain intersection to compute the regional variogram for a lag h.

Figure 3: For large lag separation distances, the points at the center of the domain
(region B) are neither head or tail of any pair, thus they are not represented in the
regional variogram.

end, we will reconcile these views in a very practical way.
The experimental variogram is used to infer the underlying
theoretical variogram, which is just an abstraction to facili-
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tate the use of statistics.
We can proceed by approaching the problem with a very

simple statement: the best unbiased estimate of an ex-
pectation is the average of the available samples. This, of
course assumes the sampling is representative of the entire
domain and the variable is stationary.

Therefore, we can write:

Experimental variogram

γ(h) =
1

2 ·N(h)

N(h)
∑

=1

�

Z() − Z( + h)
�2

So, the experimental variogram for a specific distance
(and orientation) h, is computed as half the average of the
squared difference between the variable values for all the
N(h) pairs found.

Notice that we should have included a hat or asterisk in
the γ(h) to indicate it is an inferred (or estimated) value.
We drop this to keep the notation simple.

The challenge is then to compute the variogram, inter-
pret its behavior and, as we will see later, model it to know
its value in any direction and for any distance.

4 Variogram calculation

To calculate the experimental variogram, we simply need to
find all the pairs separated by the lag separation distance
vector h.
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This seems as a trivial task, but from a computing point
of view, it is an expensive operation, since it requires n·(n+1)

2
comparisons. In each comparison, we need to determine if
the distance is equal to |h| and if the direction of the sepa-
ration of the pair is that of the vector h.

A basic algorithm seudo-code is provided in Algorithm
1.

Experimental variogram algorithm

Data: Sample set: {z(),  = 1, ..., n}
Result: Variogram value for a lag separation

distance: γ(k · h)
Initialize N(k · h) and sm as 0
for  = 1, ..., n do

for j = , ..., n do
Compute distance dj = ||i − j||
if dj = k · h then

if orientation of vector
 − j=orientation of h then
N(k · h) = N(k · h) + 1
sm = sm + (z() − z(j))2

end
end

end
end
γ(k · h) = sm

2·N(k·h)

Algorithm 1: Algorithm for variogram calculation

In the case of scattered data, we will rarely match the ex-
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act distance and orientation, therefore, the variogram is ap-
proximated by considering tolerances both in the distance
and in the orientation of the vector separating the pair, with
respect to the required lag separation vector.

Any vector direction can be defined by two angles:

� Azimuth: is the angle of the vector’s projection in
the XY plane, measured clockwise in the horizontal
plane with respect to the North direction (this is
a convention). The East has azimuth of 90°, the
South direction of 180°, and the West has azimuth
of 270°or -90°. A vertical vector does not need an
azimuth to define its orientation, only a dip.

� Dip: is the angle over the vertical plane that in-
cludes the azimuth direction of the vector, mea-
sured with respect to the horizontal line. By con-
vention, a positive sign is assigned if it points up,
and a negative if it points down.

Therefore, to define a variogram with tolerances, we need
to define tolerances over the direction and over the lag sep-
aration distance. Variograms are usually computed for a
number of multiples of a basic lag. Tolerances in the lag
separation distance usually refer to a proportion of this ba-
sic lag.
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The typical parameters and tolerances used when com-
puting an experimental variogram are:

� Parameters:

– Basic lag: it is linked to the spacing of the
data.

– Number of lags (multiples of the basic lag):
should be such that the basic lag multipled
by the number of lags does not exceed half
the size of the domain in that direction (recall
the rule of thumb discussed under the regional
variogram section).

– Azimuth
– Dip

� Tolerances:

– Lag tolerance: typically 50% of the basic lag.
– Azimuth angular tolerance: typically 15° or

22.5°. This value is added and subtracted to
the required azimuth.

– Dip angular tolerance: typically 15° or 22.5°.
This value is added and subtracted to the re-
quired dip.

– Half bandwidth: this is a maximum distance
away from the lag separation vector, used to
constrain the angular tolerances defined in az-
imuth and dip. Sometimes, a different band-
width is used in the horizontal and vertical di-
rections. It is usually defined according to the
spacing of the data.
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The main tolerances are illustrated in Figure 4.

Figure 4: Illustration of variogram tolerances in a plane.

Experimental variograms are calculated in several direc-
tions, in order to explore the spatial continuity anisotropy. It
is easy to imagine that the spatial continuity changes with
direction. Considering gravity as a factor during any de-
positional event will likely generate a different behavior in
the plane and in the vertical direction. In hydrothermal pro-
cesses, the fluids containing the metals will permeate the
rock through layers that are likely linked to the rocks for-
mation, therefore some directions will be more permeable,
thus prone to concentrating the metals, than others.

Anisotropies should reflect the understanding of the un-
derlying geology. In most cases, the interpretation of the
geological environment will dictate what are the likely prin-
cipal directions of anisotropy, that is the directions where
the maximum and minimum continuity are expected. Based
on that expert knowledge, directional variograms will be cal-
culated to confirm the anisotropy.

When geological interpretation is unclear, directional var-
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iograms can be used to investigate potential anisotropies,
but care must be taken to avoid over interpretation of sta-
tistical fluctuations in the variogram. Also, one should be
aware that the larger the tolerances, the least representa-
tive of a particular direction the variogram will be.

Variogram analysis (also called structural analysis) is of-
ten done by incrementally characterizing the variable. We
may start by computing an omnidirectional variogram, which
is an experimental variogram that only depends on the dis-
tance, but not on the orientation of the separation vector.

Similarly, the variogram can be computed over a main
plane. This is done typically over the horizontal plane, but
can also be done for a plane associated to a vein, for exam-
ple, although this requires coordinates rotations. An onmi-
horizontal variogram can be computed and compared to the
vertical direction (which is a directional variogram, so there
is no such thing as an omnivertical variogram).

Typical values and tolerances for different variograms are
presented for reference, in Table 1. Notice that these val-
ues can be used as starting point, but the final definition of
the parameters used depends on the sample data configu-
ration, and the results of the structural analysis.

Type Az AzTol Dip DipTol BandW
Directional Any 15°or 22.5° Any 15°or 22.5° Depends
Horizontal Any 15°or 22.5° 0° 15°or 22.5° Depends

Omnidirectional 0° 180° 0° 180° Depends
Omnihorizontal 0° 180° 0° 15°or 22.5° Depends

Vertical Any 180° -90 ° 15°or 22.5° Depends

Table 1: Reference parameters for variogram calculation

The vertical variogram can be computed with a smaller
lag separation distance, in case of vertical drilling. The
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spacing of the samples along the drillhole tends to be smaller
than the spacing between drillholes in the plane. Thus, we
can take advantage of this information to characterize the
spatial continuity for short distances. In general we use mul-
tiples of the composite size, in the vertical direction.

Experimental variogram calculation is somehow iterative.
We start by setting typical parameters for the lag (which de-
pends on the spacing of the data), lag tolerance (50% of the
basic lag), number of lags to compute (up to a distance that
is half the size of the domain in that direction), azimuth,
dip, angular tolerances and half bandwidth. From the re-
sults, we decide whether to change these parameters and
tolerances, so that we balance “diluting” the directional na-
ture of the variogram by increasing tolerances, with discov-
ering the structure that exists in the random function. This
means that, if with strict tolerance parameters we end up
with a variogram that does not show structure, that is, we
cannot see its nugget effect and how it increases with dis-
tance up to a plateau, then we need to iterate and increase
the tolerances, understanding that this will hide some of the
anisotropy.

5 Variogram interpretation

Once the variograms are available in multiple directions,
comes the stage of interpreting the results.

Directional variograms should provide the detail of the
behavior of the spatial continuity in different directions. If
the phenomenon studied has clear anisotropies, these should
be apparent from the shape of the experimental variograms
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in these directions.
For interpretation, we will focus our attention into the fol-

lowing features of the variograms:

� Short range: at short distances, we can identify the
nugget effect and the behavior at short distances, that
can be discontinuous (case of nugget effect), linear or
parabolic.

� Long range: at long distances, we identify the sill, which
is the variogram value at which the experimental vari-
ogram reaches a plateau and stabilizes, and the range,
which is the distance where the variogram reaches the
sill.

� Isotropy or anisotropy: If different directions show dif-
ferent variogram profiles, then we say the variogram
is anisotropic in 2D or 3D. On the other hand, if the
variogram shows a similar behavior, or in other words,
if all directional variograms tend to overlap and follow
the same shape, with similar nugget effect, range, sill
and shape of the curve, then we say the phenomenon
is isotropic.

Therefore, the interpretation stage requires plotting and
comparing variograms in different directions, identitying their
main features and trying to understand whether there are
directions with a significantly different behavior than others
(usually in terms of the range they reach or the sill they
have).

Variograms from a stationary random function show a sill
and this variogram value at long distances is actually equal
to the variance of the variable.
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In some cases variograms show particular features that
can be easily interpreted:

� Trends can be detected because the variogram keeps
increasing for larger separation distances, that is if the
variable is not stationary, it will not stabilize at the ex-
pected sill value (the variance), but it will continue in-
creasing beyond the variance.

� Cyclicity can be identified in the directional variogram
and refers to cyclical depositional phenomena with a
perfectly regular pattern. This is more commonly seen
when analyzing time related data (time series).

� Geometric anisotropy is when in two different direc-
tions, the variogram has the same shape, but with dif-
ferent ranges.

� Zonal anisotropy is when in two different directions, the
variogram has the same shape, but with different (ap-
parent) sills.

These two types of anisotropy are very common and of-
ten come intermingled.

6 Variogram modeling

The sample variogram provides information about some di-
rections and lag separation distances only. We will later
discover that both for estimation and simulation, we need
to know the variogram value for distances and orientations
beyond those available from the experimental variograms.
A model is therefore required.
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Now, this model is going to fill the blanks of our sample
variograms so that in any direction in the 3D space and for
any distance, we can know the variogram value. We could
simply interpolate between the available variogram values
at specific distances and direction, however this is not al-
lowed. It is not allowed because the variogram function will
be used as a distance metric (in a mathematical sense) and
thus requires to comply with some mathematical properties.

Without getting into the details of these requirements,
we will just say that the practice is to use licit variogram
models (see Table 2) that are known to comply with these
conditions. We can “nest” these licit variogram models to
fit the experimental variograms we have available and that
is often enough for what we need.

Model Equation Notes

Nugget Effect γ(h) =

¨

0 if h = 0
C otherwise

The range is 0 and the sill
is C

Spherical γ(h) =

(

C
�

3
2
h
 −

1
2
h3

3

�

if h ≤ 
C otherwise

The range is  and the sill
is C

Exponential γ(h) = C
�

1 − ep−3h
�

The practical range is
, where the variogram
reaches 95% of the sill C

Gaussian γ(h) = C
�

1 − ep−3h
2

2

�

The practical range is
, where the variogram
reaches 95% of the sill C

Power γ(h) = Chθ Defined by a power 0 <
θ < 2 and a positive slope
C

Sine cardinal γ(h) = C
�

1 − 
hsn

h


�

The range is  and the sill
is C

Table 2: Some licit variogram models. There are many more.

One last problem with variogram modeling is accounting
for anisotropies. In a nutshell, what we do is approximate
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the anisotropic behavior with an ellipse or ellipsoid, by look-
ing at how the ranges of the variograms change in different
directions.

This requires simplifying any anisotropic behavior we may
see in the data to characterize it with only the principal di-
rections of anisotropy, that is, in 3D, three orthogonal direc-
tions that reflect the “best fit” of the directions with maxi-
mum and minimum continuity (range). The third direction
is just the orthogonal to the two extremes.

We will try to better illustrate this approach with an ex-
ample.

7 Example

We work over the unit defined by Rock Type 20.
This is a well defined unit, from a geological point of view,

it concentrates the highest grades in the deposit and varia-
tions in average grade and local variance are fairly small at
a scale reasonable for modeling (trend plots are not shown).

It is important to start by recalling the sample statistics
of Cu grade within this unit (see Table 3).

In this deposit, there is information about the directions
of anisotropy being approximately N30°E, N120°E, and ver-
tical.

We start by analyzing in a plan view the spacing of the
samples, and determine that they are approximately 30 to
35 m apart over the plane and composites are 12m in length.
Since most drillholes are vertical, we can assume a vertical
spacing of approximately 12m. These values are important
to define the lags used for the variogram calculation and
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Statistic Value
Number of Data 1635

Mean 1.196
Std. Dev. 0.661

Coef. of Var. 0.552
Maximum 7.240

Upper Quartile 1.450
Median 1.080

Lower Quartile 0.783
Minimum 0.160

Table 3: Basic statistics for Cu in RT 20

the bandwidth tolerances.
We compute twelve horizontal directional variograms to

confirm the anisotropy. We calculate these in intervals of
15°in the plane. The parameters used for these variograms
are presented in Table 4.

The following colors are used:

� N0°E and N90°E → red
� N15°E and N105°E → black
� N30°E and N120°E → green
� N45°E and N135°E → blue
� N60°E and N150°E → yellow
� N75°E and N165°E → dark blue

The result of this calculation is presented in Figure 5.
We can see quite a lot of fluctuations in the curves (that

should be increasing from a common nugget effect to the
sill).

We update the tolerances to try to improve the results.
The new tolerances are presented in Table 5.

The resulting variograms are shown in Figure 6.
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Lag Azimuth Dip
Direction Lag Tolerance Azimuth Tolerance Dip Tolerance Bandwidth

[m] [m] [°] [°] [°] [°] [m]
N0°E 30.0 15.0 0 22.5 0 15.0 20.0

N15°E 30.0 15.0 15 22.5 0 15.0 20.0
N30°E 30.0 15.0 30 22.5 0 15.0 20.0
N45°E 30.0 15.0 45 22.5 0 15.0 20.0
N60°E 30.0 15.0 60 22.5 0 15.0 20.0
N75°E 30.0 15.0 75 22.5 0 15.0 20.0
N90°E 30.0 15.0 90 22.5 0 15.0 20.0

N105°E 30.0 15.0 105 22.5 0 15.0 20.0
N120°E 30.0 15.0 120 22.5 0 15.0 20.0
N135°E 30.0 15.0 135 22.5 0 15.0 20.0
N150°E 30.0 15.0 150 22.5 0 15.0 20.0
N165°E 30.0 15.0 165 22.5 0 15.0 20.0

Table 4: Parameters for directional variogram calculation

Figure 5: Horizontal directional variograms with the first set of tolerances.
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Lag Azimuth Dip
Direction Lag Tolerance Azimuth Tolerance Dip Tolerance Bandwidth

[m] [m] [°] [°] [°] [°] [m]
N0°E 35.0 17.5 0 22.5 0 15.0 30.0

N15°E 35.0 17.5 15 22.5 0 15.0 30.0
N30°E 35.0 17.5 30 22.5 0 15.0 30.0
N45°E 35.0 17.5 45 22.5 0 15.0 30.0
N60°E 35.0 17.5 60 22.5 0 15.0 30.0
N75°E 35.0 17.5 75 22.5 0 15.0 30.0
N90°E 35.0 17.5 90 22.5 0 15.0 30.0

N105°E 35.0 17.5 105 22.5 0 15.0 30.0
N120°E 35.0 17.5 120 22.5 0 15.0 30.0
N135°E 35.0 17.5 135 22.5 0 15.0 30.0
N150°E 35.0 17.5 150 22.5 0 15.0 30.0
N165°E 35.0 17.5 165 22.5 0 15.0 30.0

Table 5: Improved parameters for directional variogram calculation

Figure 6: Horizontal directional variograms with improved tolerances.
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We can see that, by increasing the lag and tolerances,
the curves tend to be more stable. We identify that the
curves in green for directions N0°E and N90°E show the ex-
tremes in terms of short range and long range variograms.
It is clear that a zonal anisotropy occurs.

We now compute the vertical variogram and plot it to-
gether with the two main horizontal directions identified above.
The parameters for computing the vertical variogram are
shown in Table 6.

Lag Azimuth Dip
Direction Lag Tolerance Azimuth Tolerance Dip Tolerance Bandwidth

[m] [m] [°] [°] [°] [°] [m]
Vertical 12.0 6.0 0 180.0 -90 15.0 20.0

Table 6: Parameters for vertical variogram calculation

The plot also displays the expected sill, which is the vari-
ance of the distribution (Figure 7).

The final step is to fit a model. As explained before, the
model represents an ellipsoid where each nested structure
is defined in 3D and parameterized by the ranges in the
three principal directions. The axes of the ellipsoid must
follow the main directions, so the variograms are rotated
according to three angles:

� Angle 1: azimuth rotation
� Angle 2: dip rotation
� Angle 3: plunge rotation

After iterating to fit the model to the experimental vari-
ograms in the principal directions, the final model obtained
is the one presented in Table 7 and plotted in Figure 8.
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Type Sill Angle 1 Angle 2 Angle 3 Range Y” Range X” Range Z”
Nugget 0.05

Spherical 0.23 30 0 0 20 35 150
Spherical 0.0567 30 0 0 20 ∞ 150
Spherical 0.10 30 0 0 250 ∞ 150

Table 7: Parameters of the variogram model

Figure 7: Directional variograms for the three principal directions.
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Figure 8: Fitted model in the principal directions of anisotropy.
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ellipse, 21
ellipsoid, 21
experimental variogram, 6

geometric anisotropy, 19

h-scatter plot, 3
head, 3

isotropic, 18

lag separation, 2, 4
licit variogram models, 20

nugget effect, 18

omnidirectional variogram,
16

omnihorizontal variogram, 16

principal directions of anisotropy,
15, 21

random function, 6
range, 18
regional variogram, 6

sample variogram, 6
second-order stationarity, 3,

8
semi-variogram, 5
sill, 18
spatial covariance, 4
stationary, 7, 8
stationary random function,

18
structural analysis, 16

tail, 3
theoretical variogram, 6
tolerances, 13
trend, 19
two-point statistics, 3

variance, 18
variogram, 5
vertical variogram, 16

zonal anisotropy, 19
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