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Summary

Predicting the value of a variable at an unsampled location
is presented for continuous variables, such as the grade of
an element.

We briefly review the methods for estimation (prediction)
based on pure geometrical conditions, and then move on to
introduce kriging, which is a collection of methods based
on principles of regression. These methods make use of
the spatial continuity of the variables by means of the var-
iogram or the covariance. We show simple kriging, which
assumes the mean of the random variables is constant and
known over the domain. Then, we review ordinary kriging,
where the mean is assumed constant within the search ra-
dius around the estimation location, but unknown. Other
types of kriging are discussed.

We show the deduction of the kriging equations, by se-
quentially imposing the conditions of linearity, that is, the
estimator is a weighted linear combination of the known
samples, unbiasedness, which means that on average the
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estimate is fair and does not overestimate or underestimate
the true unknown value, and optimality, which imposes min-
imum spread in the squared errors.

We extend the notion of point estimation to blocks and
explain the main properties, limitations and drawbacks of
kriging.

1 Introduction

The main problem that we will address is that of estimat-
ing the value of a variable at an unsampled location, from
known values at sample locations in its neighborhood.

Notice that one of the main assumptions to perform this
estimation is that all the sample locations and the un-
sampled location belong to the same domain.

As a general framework, we will consider the following
setting: we have n samples, z(),  = 1, ..., n available in
the neighborhood of a location of interest 0, all belonging
to the same domain (see Figure 1). We would like to predict
the value at this locations. We denote this value as z∗(0).

The estimate will be linear:

z∗(0) = λ0 +
n
∑

=1

λz() (1)

where λ,  = 0, ..., n are constant values in R
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Figure 1: The general framework for the estimation problem. The domain is depicted
by the continuous line, while the neighborhood for searching samples is shown by the
dashed line. Only 4 of the 5 samples in the neighborhood are inside the domain and
will be used for estimation.

The main question we need to address is how do we de-
termine the weights λ,  = 0, ..., n.

Notice that we will write the variable in lower case, if no
consideration of the notion of random function is necessary
(as in the case of the geometric approaches: nearest neigh-
bor estimation and inverse distance weighting estimation).
When we call for the random function model, we will use
upper case (as in kriging).
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2 Nearest neighbor (polygonal)
estimator

One of the simplest approaches to determine the weights in
Equation 1 is to assign all the weight to the closest sample
and assign a weight of 0 to all other samples, and leave the
constant λ0 as 0, as well.

Nearest neighbor estimator

z∗
NN
(0) = λNN0 +

n
∑

=1

λNN

z() (2)

λNN

=
�

1 if  is closest to 0

0 otherwise
 = 0, ..., n

When estimating a regular grid of points, this estimator
creates a set of polygons with constant value around each
sample. This is similar to the approach for polygonal declus-
tering described before.

The global distribution of estimated values with this ap-
proach, compensates for clustering of the data, and spans
the entire variability of the sample distribution. This is a
method that does not smooth the estimated values.

It is easy to see that this method does not take into ac-
count spatial continuity, and does not account for redun-
dancy in the information.
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3 Inverse distance weighting
estimator

Another method based purely on geometry is the inverse
distance weighting approach. Here, each sample is weighted
according to how close it is to the unsampled location to be
estimated. This weight can be affected by a power usually
in the range [1,4].

Inverse distance weighting estimator

z∗
DW
(0) = λDW0

+
n
∑

=1

λDW


z() (3)

λDW
0
= 0

λDW

=

1/d
0
∑n
j=1

1/d
j0

The method tends to give a result similar to the nearest
neighbor estimator as the power increases. If the power is
low, results are a smooth interpolation between samples.
For computational reasons, a small value is added at the
denominator of the fractions to ensure that, if the distance
is 0, the computer does not undefine that division.

In case of clear anisotropies, distances can be corrected
to account for this.
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4 Best linear unbiased estimator:
kriging

In order to define an estimator that guarantees unbiased-
ness and minimum spread, we apply sequentially the re-
quirements and deduce how these constrain the determi-
nation of the weights. These types of estimators are called
BLUE, best linear unbiased estimators.

We start by the definition of a linear estimator in Equa-
tion 1. To have all the steps in this section, we repeat it
here (Equation 4). The weights are really a function of the
location 0, however to keep the notation simple, we simply
write λ instead of λ(0).

Linear estimator:

z∗(0) = λ0 +
n
∑

=1

λz() (4)

where λ,  = 0, ..., n are constant values in R

Next, we need to impose unbiasedness. This means that
on average (over all locations estimated), the estimate does
not overestimate or underestimate the true value. Now,
how can we impose (and later test) this if we only have one
true value at every location?

One way around this problem is to call for the random
function model. We said that we are interpreting each
regionalized variable as a random variable, and that
these random variables within the domain constitute
the random function, which is characterized by the statis-
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tical distribution of the random variables and their statistical
and spatial relationships.

So, we rewrite our estimator using random variables (we
use upper case letters instead lower case):

Z∗(0) = λ0 +
n
∑

=1

λZ() (5)

We estimate the random variable Z at location 0 from
the available random variables at sample locations: Z(),  =
1, ..., n.

Unbiasedness is imposed by setting the expected value
of the estimator to be equal to the expected value of the
true random variable at the unsampled location:

E{Z∗(0)} = E{Z(0)} (6)

=⇒ E

¨

λ0 +
n
∑

=1

λZ()

«

= E{Z(0)} (7)

Finally, optimality is imposed by first defining a measure
of quality. In this case, as in many engineering applications,
dispersion is penalized with the square of the errors, that is,
the estimator minimizes the variance of the errors.
Again, this is imposed by calling for the random function
formalism:

min
{λ,=0,...,n}

Vr{Z∗(0) − Z(0)}} (8)

4.1 Simple kriging

Simple kriging assumes that the mean is known and con-
stant everywhere in the domain.
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We can impose the three steps to deduce the estimator
in this case.

Linearity

The estimate must be linear:

Z∗
SK
(0) = λSK0 +

n
∑

=1

λSK

Z()

Unbiasedness

The estimate must be unbiased. We use the linearity of the
expected value to bring the expected value inside the sum.
Recall that the λs are constant:

E{Z∗
SK
(0)} = E{Z(0)}

E

¨

λSK
0
+

n
∑

=1

λSK

Z()

«

= E{Z(0)}

λSK
0
+

n
∑

=1

λSK

E{Z()} = E{Z(0)}

Now, we call for our stationarity assumption. We know
that the mean is constant everywhere and known, so we
denote E{Z()} =m and replace in the equation:

λSK
0
+

n
∑

=1

λSK

m =m
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The only way for this equality to hold is if:

λSK
0
=

�

1 −
n
∑

=1

λSK


�

m

By replacing this value in the estimate, we obtain the
simple kriging estimate:

Z∗
SK
(0) =

�

1 −
n
∑

=1

λSK


�

m +
n
∑

=1

λSK

Z() (9)

Optimality

Finally, we impose optimality:

min
{λSK ,=0,...,n}

Vr{Z∗
SK
(0) − Z(0)}

We start by computing the variance and then we find the
minimum:

Vr{Z∗
SK
(0) − Z(0)} =

Vr

¨�

1 −
n
∑

=1

λSK


�

m +
n
∑

=1

λSK

Z() − Z(0)

«

In order to develop this expression, we can assume m = 0
without loss of generality.
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Vr{Z∗
SK
(0) − Z(0)}

= E











�

Z∗
SK
(0) − Z(0)
�2
− [E
¦

Z∗
SK
(0) − Z(0)
©

︸ ︷︷ ︸

unbiased =0

]2











= E
n
�

Z∗
SK
(0) − Z(0)
�2o

= E

(

�

n
∑

=1

λSK

Z() − Z(0)

�2)

We go back to the initial notation to expand the squared
term:

Vr{Z∗
SK
(0) − Z(0)}

= E

(

n
∑

=1

n
∑

j=1

λSK

λSK
j
Z()Z(j) − 2

n
∑

=1

λSK

Z()Z(0) + (Z(0))2

)

and now, we use the linearity of the expected value and
bring the expected value inside the sums:

Vr{Z∗
SK
(0) − Z(0)}

=
n
∑

=1

n
∑

j=1

λSK

λSK
j
E
�

Z()Z(j)
	

−2
n
∑

=1

λSK

E{Z()Z(0)} + E

�

(Z(0))2
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Since we are assuming the mean is null, then the follow-
ing identities can be recognized (notice that we simplify the
notation here):

E
�

Z()Z(j)
	

= Co{Z(), Z(j)} = Cj
E{Z()Z(0)} = Co{Z(), Z(0)} = C0

E
�

(Z(0))2
	

= Vr{Z(0)} = σ20

Thus, we want to minimize the following expression:

min
{λSK ,=1,...,n}

Vr{Z∗
SK
(0) − Z(0)}

= min
{λSK ,=1,...,n}

(

n
∑

=1

n
∑

j=1

λSK

λSK
j
Cj − 2

n
∑

=1

λSK

C0 + σ20

)

In order to find the unknown λs, we must take the partial
derivatives and make them equal to 0.

min
{λSK ,=1,...,n}

(

n
∑

=1

n
∑

j=1

λSK

λSK
j
Cj − 2

n
∑

=1

λSK

C0 + σ20

)

= min
{λSK ,=1,...,n}

ƒ (λSK
1
, ..., λSK

n
)

=⇒
∂ƒ (λSK

1
, ..., λSK

n
)

∂λSK


= 0 ∀ = 1, ..., n

=⇒ 2
n
∑

j=1

λSK
j
Cj − 2C0 = 0 ∀ = 1, ..., n
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This leads to the following linear system of n equations,
known as the simple kriging system:

n
∑

j=1

λSK
j
Cj = C0 ∀ = 1, ..., n (10)

By replacing the optimum λs into the minimized vari-
ance, we obtain the simple kriging variance:

σ2
SK
(0) = σ20 −

n
∑

=1

λSK

C0 (11)

Summary

In summary, the simple kriging estimate, the simple kriging
variance and the simple kriging system of equations are:

Simple kriging estimator

Z∗
SK
(0) =

�

1 −
n
∑

=1

λSK


�

m +
n
∑

=1

λSK

Z() (12)

σ2
SK
(0) = σ20 −

n
∑

=1

λSK

C0 (13)

n
∑

j=1

λSK
j
Cj = C0 ∀ = 1, ..., n (14)
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4.2 Ordinary kriging

Ordinary kriging assumes that the mean is unknown, but
constant within the search neighborhood from where
the samples used for estimation are drawn.

The process to determine the optimum weights is similar
to that of simple kriging.

Linearity

The estimate must be linear:

Z∗
OK
(0) = λOK0 +

n
∑

=1

λOK

Z()

Unbiasedness

The estimate must be unbiased. Following the same logic
as with simple kriging, we get:

E{Z∗
OK
(0)} = E{Z(0)}

E

¨

λOK
0
+

n
∑

=1

λOK

Z()

«

= E{Z(0)}

λOK
0
+

n
∑

=1

λOK

E{Z()} = E{Z(0)}

Now, we call for our quasi second order stationarity as-
sumption, which means that within the neighborhood where
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the samples were found, the mean is approximately con-
tant. But remember that in ordinary kriging we also assume
this mean to be unknown, so the only way for this equality
to hold is by setting:

λOK
0
= 0

n
∑

=1

λOK

= 1

By replacing this value in the estimate, we obtain the
ordinary kriging estimate:

Z∗
OK
(0) =

n
∑

=1

λOK

Z() (15)

Optimality

We need to impose optimality, but now we have the con-
straint
∑n

=1
λOK

= 1:

min
{λOK ,=0,...,n}

Vr{Z∗
SK
(0) − Z(0)}

sbject to
n
∑

=1

λOK

= 1

We compute the variance just as we did for simple kriging
and we impose the constraint:
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min
{λOK ,=1,...,n}

Vr{Z∗
OK
(0) − Z(0)}

s.t.
n
∑

=1

λOK

= 1

= min
{λOK ,=1,...,n}

(

n
∑

=1

n
∑

j=1

λOK

λOK
j
Cj − 2

n
∑

=1

λOK

C0 + σ20

)

s.t.
n
∑

=1

λOK

= 1

To find the optimum weights, we need to minimize a new
function that accounts for the constraint. This is done by
“adding zero” to the function, in the form of the constraint,
that is,
∑n

=1
λOK

− 1 = 0, but weighted by an additional pa-

rameter called Lagrange multiplier. We use 2μ, so that the
final equations depend on μ only.
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min
{λOK ,=1,...,n}

(

n
∑

=1

n
∑

j=1

λOK

λOK
j
Cj − 2

n
∑

=1

λOK

C0 + σ20

)

+2μ

¨

n
∑

=1

λOK

− 1
«

= min
{λOK ,=1,...,n}

ƒ (λOK
1
, ..., λOK

n
, μ)

=⇒
∂ƒ (λOK

1
, ..., λOK

n
, μ)

∂λOK


= 0 ∀ = 1, ..., n

∂ƒ (λOK
1
, ..., λOK

n
, μ)

∂μ
= 0

=⇒ 2
n
∑

j=1

λOK
j
Cj − 2C0 + 2μ = 0 ∀ = 1, ..., n

n
∑

=1

λOK

= 1

This leads to the following linear system of n + 1 equa-
tions, known as the ordinary kriging system:

n
∑

j=1

λOK
j
Cj + μ = C0 ∀ = 1, ..., n (16)

n
∑

=1

λOK

= 1
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Again, we can obtain the “optimized” variance of the er-
ror, by replacing the optimum λs into the minimized vari-
ance. This is known as the ordinary kriging variance:

σ2
OK
(0) = σ20 −

n
∑

=1

λOK

C0 − μ (17)

Summary

In summary, the ordinary kriging estimate, the ordinary krig-
ing variance and the ordinary kriging system of equations
are:

Ordinary kriging estimator

Z∗
OK
(0) =

n
∑

=1

λOK

Z() (18)

σ2
OK
(0) = σ20 −

n
∑

=1

λOK

C0 − μ (19)

n
∑

j=1

λOK
j
Cj + μ = C0 ∀ = 1, ..., n (20)

n
∑

=1

λOK

= 1
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4.3 Interpretation of kriging

We will now analyze the kriging estimate, kriging variance
and kriging system of equations to try to understand intu-
itively how it works.

The weights and the mean

For simple kriging, the kriging estimate is a linear combi-
nation of the samples and of the global mean m:

Z∗
SK
(0) =

�

1 −
n
∑

=1

λSK


�

︸ ︷︷ ︸

λm

m +
n
∑

=1

λSK

Z() (21)

Notice that the sum of the weights is equal to one:

λm +
n
∑

=1

λSK

=

�

1 −
n
∑

=1

λSK


�

+
N
∑

=1

λSK

= 1

Recall that this condition was explicitly imposed in ordi-
nary kriging, but not in simple kriging.

Also, notice the extreme cases:

� If the sample data are not relevant, their weight will be
0, and all the weight will be assigned to the mean m.
The best estimate is the mean, as this is all we know:
the sample belongs to the domain and that domain has
mean m, but no conditioning data is close enough to
change this prior knowledge.

� If the estimation location 0 coincides with a sample
value, all the weight is assigned to that sample, so the
mean and all the other samples become irrelevant.
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In ordinary kriging, the mean is unknown (and absent
from the expression of the estimate). Therefore, the weight
is shared among the samples. Even if none of the samples is
relevant for the estimation location, they help inferring the
local mean and ordinary kriging will simply average them
depending on their spatial redundancy.

The kriging variance

The kriging variance measures the quality of the estimation.
However, as it can be seen from its equation, it does not
depend on the sample values, but only on the spatial con-
figuration of the sample locations (and on the covariance
function).

Therefore, the kriging variance does not capture a fea-
ture known as proportional effect, which is that the variabil-
ity tend to be a function of the value of the variable. For in-
stance, low grades tend to be less variable than high grades
in an ore deposit, and the relationship between the esti-
mated mean and standard deviation is linear (in the case of
a variable with a lognormal distribution, as is the case with
most grades). This property of the variance to be dependent
on the mean is also called heteroscedasticity.

Let us review the kriging variance in simple and ordinary
kriging and see the extreme cases, to better understand
how it behaves.

The simple kriging variance is:

σ2
SK
(0) = σ20 −

n
∑

=1

λSK

C0

In the case of ordinary kriging, it is:
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σ2
OK
(0) = σ20 −

n
∑

=1

λOK

C0 − μ

The extreme cases are:

� If the sample data are not relevant, their weight in sim-
ple kriging will be 0, and also the covariances between
the estimation location and the sample, and therefore
the resulting estimation variance will be σ2

0
. The ex-

pected error if we have no relevant local information
will be the error expected for the domain, that is, as
with the estimate, we go back to the prior knowledge.
In the case of ordinary kriging, the sum of the weights
must be equal to 1, so we cannot have all the weights
equal to zero. however, the covariances involved will
be zero. So the resulting kriging variance will be equal
to σ2

0
− μ. Notice that μ can be positive or negative.

� If the estimation location 0 coincides with a sample
value, the weight of that sample in kriging will be 1
and the covariance between the estimation location
and that sample is equal to the variance, therefore, the
kriging variance is 0. This reflects no uncertainty about
the location, since we know its true value. In ordinary
kriging, if this happens, the Lagrange multiplier takes
a value of 0.

The system of equations: redundancy vs closeness

To better understand the systems of equations, these can
be written in matrix form.
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The (n× n) simple kriging system of equations presented
in Equation 14 can be written as:









C11 C12 · · · C1n
C21 C22 · · · C2n

... ... . . . ...
Cn1 Cn2 · · · Cnn









︸ ︷︷ ︸

covariances between
the samples









λSK
1

λSK
2...

λSK
n









︸ ︷︷ ︸

weights

=









C10
C20

...
Cn0









︸ ︷︷ ︸

covariances between
samples and estimation

location

(22)

�

C
� �

λSK
�

=
�

k
�

(23)

It can be seen that the left hand side matrix of covari-
ances measures the redundancy between the samples and
does not involve the location where we want to estimate.
The vector of weights is the unknown. The right hand side
covariance vector contains the closeness term of the sys-
tem of equations, and involves the “distance” between each
sample and the location we are estimating.

We could rewrite the system of equations as:
�

Redndncy
� �

Weghts
�

=
�

Coseness
�

This indicates that kriging balances the redundancy of
the sample information along with the closeness of the sam-
ples to the location estimated, to determine the unknown
weights.

Notice that, to solve for the unknown weights we just
need to multiply on the left by the inverse of the matrix of
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covariances:

�

C
� �

λSK
�

=
�

k
�

�

�

C−1
�

· (24)
�

C−1
�

·
�

C
� �

λSK
�

=
�

C−1
� �

k
�

(25)
�


� �

λSK
�

=
�

C−1
� �

K
�

(26)
�

λSK
�

=
�

C−1
� �

K
�

(27)

In summary, the unknown weights can be obtained by
multiplyng the inverse of the matrix of covariances be-
tween the samples, by the vector of covariances be-
tween the sample locations and the estimation location.

The interpretation and computation is similar for ordi-
nary kriging, but this system has ((n + 1) × (n + 1)) equa-
tions. For completeness, here is how the system of equa-
tions looks in matrix form:













C11 C12 · · · C1n 1
C21 C22 · · · C2n 1

... ... . . . ... ...
Cn1 Cn2 · · · Cnn 1
1 1 · · · 1 0

























λOK
1

λOK
2...

λOK
n
μ













=













C10
C20

...
Cn0
0













(28)

�

C
� �

λOK
�

=
�

k
�

(29)

It can be seen that the additional column and row im-
poses the unbiasedness constraint that the sum of the weights
be equal to 1.
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4.4 Other types of kriging

As seen in the previous sections, kriging is a general frame-
work to define estimators that satisfy some conditions. These
conditions are typically linearity, unbiasedness and optimal-
ity, specifically minimization of the error variance.

Under different assumptions of stationarity the estimate
can change. We saw the difference between simple and or-
dinary kriging. In the case of simple kriging, the mean is as-
sumed known and constant over the entire domain, which is
a very strict condition almost never met in practice. For or-
dinary kriging, the condition is for the mean to be constant
within each search neighborhood. Because it changes ev-
erywhere, we also consider it unknown, which has an effect
over the conditions that apply over the weights λs.

Ordinary kriging is widely used in practice because it
adapts to local changes in the variable.

Many other approaches can be considered and similar
deductions of the estimators are possible:

� Simple kriging with locally varying mean: one simple
extension of simple kriging is to assume we know the
mean everywhere, but instead of being a constant value,
it changes with location. So, we replace m with m(0)
in the simple kriging estimate.

� Kriging with a trend: an extension of ordinary kriging is
to assume the local mean is some polynomial form of
the coordinates, instead of a constant within the neigh-
borhood. This adds unknowns to the problem, namely,
the coefficients of the polynomial trend. The problem
can be solved in a similar fashion as with ordinary krig-
ing, but additional constraints will appear in the system
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of equations and new Lagrange multipliers need to be
added to solve the minimization problem, and these
appear in the system of equations.

� Kriging of a transform of the original data: this is prob-
ably one of the most interesting possibilities. The origi-
nal data can be transformed and the optimization prob-
lem can be stated in the original variable, which will
modify the estimator and system of equations. Some
examples of transformations are:

– Logarithmic transformation
– Gaussian transformation
– Rank transformation
– Indicator transformation

There are many more variants of kriging, but these are
seldom used in practice.

5 Block estimation

In many cases, the estimation support, that is the volume
over which the estimated value is assessed, is different than
the sample support (the volume of the sample). In mining,
for example, estimation is done over a block model, where
the domain is divided into relatively large blocks that rep-
resent selective units, over which decisions are made about
processing. The samples, on the other hand, represent the
volume of the drillhole at a regular length (called compos-
ite). The drillhole is a cylinder only a few centimeters in
diameter, while the blocks are several meters in each di-
mension.
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For additive variables, the estimated value of the block is
nothing but the average of the estimated values over points
within the block (here points refer to the support of the sam-
ple information).

We can analyze how kriging changes, when we consider
estimation over a block. Recall the general structure of the
kriging equations:













C11 C12 · · · C1n 1
C21 C22 · · · C2n 1

... ... . . . ... ...
Cn1 Cn2 · · · Cnn 1
1 1 · · · 1 0













︸ ︷︷ ︸

does not depend on the estimation support













λOK
1

λOK
2...

λOK
n
μ













=













C10
C20

...
Cn0
0













︸ ︷︷ ︸

depends on the estimation support

(30)

We can see that only the right hand side vector depends
on the estimation location support.

Estimation at block support could be done in two ways:

� Estimate several points within the volume V of interest
and then average the estimated values.

� Adjust the estimate to account for the volume of the
estimate.

These two results are equivalent, and computationally,
the second approach is simpler, since the covariance matrix
is inverted only once for each estimated block.

Basically, the system of equations changes to:
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C11 C12 · · · C1n 1
C21 C22 · · · C2n 1

... ... . . . ... ...
Cn1 Cn2 · · · Cnn 1
1 1 · · · 1 0

























λOK
1

λOK
2...

λOK
n
μ













=













C1V

C2V
...

CnV
0













(31)

where CV is the averge covariance between the sample lo-
cated at  and the volume of interest V, which we can as-
sume is centered at 0.

This average covariance should consider all possible vec-
tors from the sample to the volume (as depicted in Figure
2).

Figure 2: The relationship between a sample and the volume V.
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This requires computing the following integral:

CV =
1

|V|

∫

V

C(,V)dV (32)

In order to avoid this (painful) integral, we discretize the
block into a sufficient number of points, and approximate
this average covariance (Figure 3):

CV ≈
1

ndsc

ndsc
∑

j=1

C(,j∈V) (33)

where the points {j∈V , j = 1, ..., ndsc} discretize the volume
V as shown.

Figure 3: The discretization of the block to compute the average covariance.

The number of discretization points required to approx-
imate the true integral value with a low error depends on
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the spatial continuity, but as a rule of thumb, discretiza-
tions of 4 × 4 in 2D and 3 × 3 × 2 in 3D are enough. Notice
that usually, the vertical discretization in 3D will depend on
the composite size (the length of the sample in that direc-
tion, when considering vertical drillholes). For example, if
the composites (samples) are 10m in length and the block
is 10m in height, then the vertical discretization is assumed
to be 1. In that case, the X and Y discretizations can be
made 4 × 4, to end up with 4 × 4 × 1.
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