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Summary

We have already discussed the kriging approach to deter-
mine the best linear unbiased estimate at every location.
The kriging estimate has an associated kriging variance whi-
ich measures the variance of the error between the estimate
and the true value. However, this measure of uncertainty
does not depend on the actual value of the variable, but
only on the spatial configuration of the sample data used in
the estimation. Thus, it does not capture the “proportional
effect”, that is, the fact that the variability depends on the
local value of the variable.

In this chapter, we introduce the multiGaussian frame-
work, which allows characterizing the uncertainty in a sim-
ple, yet effective manner.

1

https://julianmortiz.com/


As most variables are not normally distributed, the ap-
proach requires a quantile transformation and a back trans-
formation at the end of the analysis. We show that the sim-
ple kriging estimate and its corresponding variance identify
the conditional expectation and variance in a multiGaus-
sian framework. Thus, uncertainty quantification is simply
achieved by transforming the data to a Gaussian distribu-
tion, performing simple kriging of the normally transformed
values and back transforming the resulting distribution to
original units.

1 Introduction

The random function model provides the means for infer-
ence. We can assume properties (statistical properties, that
is) of the variable at every location, and from there, derive
an estimate that complies with some imposed properties,
such as unbiasedness and optimality.

Once the estimate is obtained, the next question arises:
what is the uncertainty around that estimate?

The kriging estimate provides the best unbiased linear
estimator and it comes with an associated kriging variance.
Let us write the estimate and estimation variance in simple
and ordinary kriging:
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Both expressions for the variances (Equations 2 and 4),
do not depend on the Z values. The variances only depend
on the spatial arrangement of the samples with respect to
the location estimated through the covariance. They also
depend on the prior variance of the random variable σ2

0
.

Variables showing a lognormal distribution have what is
called a “proportional effect”. This is, a variability that de-
pends on the actual values. Typically low values are less
variable (hence easier to estimate) than high values. The
variance is therefore a function of the value at the estima-
tion location.

The kriging variance is therefore a poor tool to infer the
uncertainty expected around the estimate.

We introduce next the multiGaussian model. Under this
model the kriging variance is an appropriate measure of un-
certainty, and this can be useful to assess uncertainty in our
case because using a transformation of the data, we can re-
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cover an uncertainty that accounts for the proportional ef-
fect.

2 The multiGaussian distribution

2.1 Univariate case

Let us start by recalling the univariate Gaussian distribu-
tion. We say a random variable Y (upper case) follows a
Gaussian (or normal) distribution, if its probability density
function (pdf) is:

ƒY(y) =
1

p

2πσ2
ep

�

−
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2σ2

�

(5)

Notice that the density is defined for each value Y = y.
The probability density function depends only on two pa-
rameters: the mean μ and the variance σ2. We note:

Y ∼ N (μ, σ2) (6)

We say that “Y follows a Gaussian or normal distribution
with mean μ and variance σ2”.

The variable can be standardized by subtracting the mean
and dividing it by the standard deviation, leading to a stan-
dard Gaussian variable:

Y ′ =
Y − μ

σ
(7)

Y ′ ∼ N (0,1) (8)
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2.2 Bivariate case

Now, we extend this definition to the bivariate case. The
bivariate Gaussian pdf for two random variables Y1 and Y2
is:

ƒY1Y2(y1, y2) =
1
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Again, the joint (bivariate) pdf is defined for all values
taken by the two random variables Y1 = y1 and Y2 = y2.

And we note:
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In this case, we have the joint pdf of two Gaussian vari-
ables, each parameterized by their corresponding means
and variances: μY1, μY2, σ

2
Y1
, σ2

Y2
. The relationship between

the two univariate Gaussian distributions is controlled by
the correlation coefficient ρY1Y2, which is related to the co-
variances as follows:

CY1Y2 = CY2Y1 = ρY1Y2σY1σY2 (11)
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Notice that if both variables are standard Gaussian, the
joint distribution simplifies to:
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where ρY′1Y
′
2
= ρY′2Y

′
1
= ρ is the correlation coefficient be-

tween both variables. The joint pdf can be written as:
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2.3 Multivariate case

Finally, let us write the probability density function for a mul-
tivariate Gaussian case. This means we have n random vari-
ables with means and variances μY and σ2

Y
. Furthermore,

these random variables are correlated and their pairwise re-
lationships are quantified by the correlation coefficients ρYYj
with , j = 1, ..., n:
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where we use bold characters for vector and matrix nota-
tion:
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Again, each covariance term in the variance-covariance
matrix (or, simply, the covariance matrix) can be written
as a function of the pairwise correlations and the standard
deviations:

CYYj = CYjY = ρYYjσYσYj

2.4 Conditional distribution

Multivariate case

When some of the arguments of a multivariate Gaussian dis-
tribution are known, we can compute the conditional distri-
bution. The conditional distribution can be derived by first
partitioning the multiGaussian vector Y into Y1 (the vari-
ables to be predicted) and Y2 (the variables known, which
are used as conditioning), vectors of size n1 and n2, such
that n1 + n2 = n. The corresponding means and covariance
matrices are:
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(15)

One of the features of a multivariate Gaussian distribu-
tion is that any subset of its variables, conditioned to known
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values of another subset of its variables, is still multivari-
ate Gaussian. Therefore, we only need to know the corre-
sponding means and covariance matrix to fully know the
conditional distribution. When conditioning to Y2 = y2, the
means and covariance matrix of Y1|Y2 = y2 (we say Y1

given Y2 = y2) can be easily computed (by applying Bayes’
law). The resulting conditional moments are (recall that the
mean and variance are called moments of the distribution):

μ1|2 = μ1 + 
12
−1
22
(y2 − μ2)

11|2 = 11 − 12
−1
22
21 (16)

Bivariate case

In the bivariate case, these translate into:
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(17)

This means that if the random variable Y2 is known to
take a specific value y2, we can “update” the prior distri-
bution of the random variable Y1 and obtain what we call a
posterior (or conditional) distribution. The conditional distri-
bution is a univariate Gaussian distribution with parameters
provided in Equation 17, or:

Y1|Y2 = y2 ∼ N (μY1|Y2=y2, σ2Y1|Y2=y2) (18)
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We will now introduce the concept of multiGaussian krig-
ing and see how it relates to the conditional expectation and
conditional variance shown above.

3 MultiGaussian kriging

3.1 Introduction

It was mentioned before that there are many variants of
kriging. They all build from the same principles, but de-
pending on the assumptions, they yield different results.

One of such approaches is to work with a transform of
the data. In this case, a quantile transformation is per-
formed over the original distribution to convert it into a stan-
dard Gaussian distribution. Kriging is then performed over
the transformed variable, also called normal scores. And
this is where things become interesting. If simple kriging
is used, the simple kriging estimate and the simple kriging
variance (of the normally transformed values) is identical
to the expression for the conditional expectation and condi-
tional variance presented in Equation 16.

3.2 The conditional mean and variance in
the multiGaussian case

We can rewrite Equation 16 to find the conditional expec-
tation and conditional variance of one of the Gaussian ran-
dom variables (the “estimated variable”) conditioned to the
remaining random variables (the “samples”).
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Let us write the vector of random variables and their
means as:
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And the variance-covariance matrix as:
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We can recognize the matrix 11 as the matrix of covari-
ances between the conditioning variables, and the vector
01 as the vector of covariances between the n condition-
ing variables and the variable we are trying to estimate Y0.

Recall the regression expression for the conditional mean
and variance in Equation 16, now written in terms of Y0

and Y1:

μ0|1 = μ0 + 
01
−1
11
(y1 − μ1)

00|1 = 00 − 01
−1
11
10

And assume that the mean for all the random variables
is m, per the stationarity assumption. We can rewrite the
conditional mean and variance as:

Y∗
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Equation 21 is exactly the same as the simple kriging
estimate, and Equation 22 is the simple kriging variance.
The vector 

01
−1
11

is no other than the vector  of simple
kriging weights λ,  = 1, ..., n:

Y∗
0|1 = Y1 + (1 − )m (23)

σ2
0|1 = σ

2
0
− 10 (24)

In summary, the conditional mean and variance in the
multivariate multiGaussian regression coincide with the
simple kriging estimate and simple kriging variance.

3.3 Practical implementation

What does it mean for a random function Y distributed in
space over a domain D to be multiGaussian?

This condition requires that each random variable Y() ∈
D is univariate Gaussian, and that the joint distribution be-
tween variables Y() and Y(j) for all , j = 1, ..., n be bi-
variate Gaussian, and between variables Y(), Y(j), and
Y(k), for all , j, k = 1, ..., n be trivariate Gaussian, and, in
general, that any combination of n random variables follow
a n-variate multiGaussian distribution. Under the assump-
tion of stationarity, this is the equivalent to say that the
bivariate relationships between Y() and Y( + h) must be
biGaussian and, in general, between Y(), Y( + h1), ...,
Y( + hk) must be a (k + 1) multiGaussian distribution. No-
tice that the relationships are no longer a function of loca-
tion, but depend on the separation between locations.
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In practice, the variable Z is not distributed as a multi-
Gaussian variable. Therefore, we will need to transform it.
There is not a direct way to do this (that is, to transform
the joint distribution of multiple random variables, each at
a different location, into a multiGaussian distribution), so
we proceed by transforming the univariate histogram into a
univariate Gaussian distribution. To keep things simple, we
use the standard Gaussian distribution (which has a mean
of 0 and a variance of 1). Then, the high-order distribution
is usually assumed and sometimes checked to verify the
multiGaussian assumption is reasonable.

Gaussian transformation

The Gaussian transformation or normal score transforma-
tion is a quantile transformation that assigns to any value in
an original distribution Z, a corresponding Gaussian value
or normal score. The resulting distribution of normal scores
follows a standard normal distribution:

Z = φ(Y) (25)
Y = φ−1(Z) (26)
Y ∼ N (0,1) (27)

Notice that the transformation function φ links the cumu-
lative distribution functions of Z and Y. If Z follows a dis-
tribution F(z), and we call the standard Gaussian cdf G(y),
then φ = F−1 ◦G.

In order to implement this Gaussian transformation, we
need the representative distribution of Z, therefore, declus-
tering weights may need to be accounted for, to ensure the
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distribution is corrected for spatial bias. The process is illus-
trated in Figures 1 and 2.

Figure 1: The graphical representation of the normal score transformation. Corre-
sponding quantiles of the original declustered distribution and from a standard Gaus-
sian distribution are matched.

Figure 2: The original and transformed histograms.

13



Back-transformation

One of the nice properties of the normal score transforma-
tion is that results of operations over Gaussian values can
be back-transformed into original units, by simply inverting
the transformation:

Zr = φ(Y r) (28)

where the superscript r indicates the result of a mathemati-
cal operation of Gaussian values. Furthermore, the trans-
formation is a bijection, that is, a one-to-one correspon-
dence exists between the two distributions. Each value has
a unique transformed value, hence one can go back and
forth from one variable to the other.

MultiGaussian kriging to determine local conditional
distributions

Now, let us put everything together.

� We have a variable Z over a domain D. A set of samples
{z(),  = 1, ..., N} are available within the domain.

� Through a declustering technique, we determine that
these samples must be weighted to compensate for
clusters and spatial bias. These weights {(),  =
1, ..., N} are assigned to the corresponding samples.

� The cdf of the variable Z is built by sorting the val-
ues {z(),  = 1, ..., N} from low to high, obtaining the
sorted set {z()(),  = 1, ..., N,  = 1, ..., N}, and assign-
ing the corresponding weights {(),  = 1, ..., N}. In-
terpolation between sample values and extrapolation
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beyond the minimum z(1) and maximum z(N) are neces-
sary to complete the experimental cumulative distribu-
tion. For each sample value z()(), the corresponding
cumulative probability can be computed as:

F
�

z()()
�

=

∑

j=1

(j)

where (j) corresponds to the weight of the sample
z(j)().

� For each sample {z(),  = 1, ..., N}, the cumulative
probability is computed and the corresponding Gaus-
sian score is assigned as:

y() = G−1 (F(z()))

The histogram of Y (accounting for declustering weights,
since the normal scores may also be clustered spa-
tially) is Gaussian with mean 0 and variance 1.

� Perform a variogram analysis of the normal score data,
to obtain a variogram model of the normal scores, in
3D.

� Perform simple kriging of the normal scores to esti-
mate the normal score at unsampled locations:

– Search for samples in a local neighborhood.
– Select n samples according to the constraints im-

posed by the kriging plan.
– Compute the normal score covariances between

samples and between the samples and the esti-
mation location.
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– Solve the simple kriging system of equations to ob-
tain the weights.
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λSK
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– The resulting kriging estimate and variance are (re-
call that the global mean m = 0 and the variance
is σ2

0
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� Since the distribution of Y is assumed to be multiGaus-
sian, then these expressions provide the conditional
expectation and conditional variance of the distribution
of Y(0), and we know the local distribution has to be
Gaussian in shape. Then, we can back transform any
quantile of the distribution to original units. We back
transform the entire local conditional distribution, as
shown in Figure 3.

� Finally, from the numerically obtained local distribution
in original units, we can compute any desired statistics
(such as the mean and variance) by numerical integra-
tion.

4 Final comments

One common mistake is to back-transform the kriging esti-
mate of the normal scores and think that it represents the
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Figure 3: The back-transformation from the conditional Gaussian distribution to the
original units. Here, only the 9 deciles are back-transformed, but we could use as
many quantiles as needed.

estimate in original units. This is wrong! this estimate is
the 50th percentile of the local distribution, that is, it rep-
resents the median. However if the local distribution is not
perfectly symmetric, the median is different than the mean.
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The mean (the expected value) of the Z variable in original
units must be obtained by numerical integration of the local
conditional distribution. One way of doing this is drawing
a large number of uniform values in [0,1] and back trans-
forming each as shown in Figure 3. The average of these
back-transformed values is an estimate of the mean of the
local distribution in original units.

MultiGaussian kriging is an elegant approach to infer lo-
cal uncertainty, however, it only does so at point support.
We cannot do block kriging of normal scores, because the
transformation function is not linear, therefore, the average
normal scores do not match the average original values.

Any change of support must be done over the original
variable. Notice that, if the variable is additive, then we
can simply average the point estimates obtained over a dis-
cretization of the block we are trying to estimate. However,
computing the variance at block support requires knowing
the covariances between the blocks.

All the estimation with multiGaussian kriging makes a
strong assumption of stationarity. As soon as we transform
the data, we are “locking” the mean and variance of the
global distribution. The conditional expectation and vari-
ance of a multiGaussian variable coincides with the simple
kriging estimate and variance. If ordinary kriging is used,
there is no guarantee of the accuracy of the prediction of the
conditional mean and variance in the multiGaussian con-
text. This leads to an inflated variance that may cause prob-
lems when back-transformed. In theory, only simple kriging
is allowed.

MultiGaussian kriging is not commonly applied (although
some academic and industrial applications exist). However,
as we will see, it is the basis of conditional simulation.
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